Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

N-(p-Chlorophenyl)-3,3-diphenyl-4(β-phenylstyryl)azetidin-2-one

Mehmet Kabak, ${ }^{\text {a* }}$ Yalčin Elerman, ${ }^{\text {a }}$ Vildan Güner ${ }^{\mathbf{b}}$ and Tahsin Nuri Durlu ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Sciences, Hacettepe University, 06532 Beytepe, Ankara, Turkey, and ${ }^{\text {c }}$ Department of Physics, Faculty of Art and Sciences, University of Kırıkkale, 71450 Yahšihan, Kırıkkale, Turkey
Correspondence e-mail: kabak@science.ankara.edu.tr

Received 15 March 2000
Accepted 22 March 2000

Data validation number: IUC0000088
In the title compound, $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{ClNO}$, the four-membered β lactam ring is essentially planar, with a maximum deviation of 0.012 (1) \AA for the N atom. The $\mathrm{C}-\mathrm{C}$ bond lengths in the β lactam ring are 1.591 (2) and 1.549 (2) \AA. The two phenyl rings attached to the β-lactam ring are nearly perpendicular to each other [83.2(1) ${ }^{\circ}$].

Comment

Since the structure and conformation of β-lactams play a key role in the biological activity of β-lactam antibiotics, it is worthwhile studying their activity when modified by substituents. The activity and selectivity of the 4 -substituted 2 azetidinone ring can be decisively influenced by the subtituents attached to the β-lactam ring (Kumar et al., 1993; Sharma et al., 1994; Manhas et al., 1988). Previously, some structural studies were made by changing the subtituents around the β-lactam ring (Ercan et al. 1996a,b; Kabak et al., 1999a,b).

The four-membered β-lactam ring of (I) is nearly planar, with a slight deviation of the N 1 atom $[0.012$ (1) \AA A . The bond lengths on the lactam ring are comparable with those in monocyclic 3- or 4-substituted 2-azetidinones (Kabak et al., $1999 a, b$, and references therein). Due to the different substituents attached to the β-lactam ring, a very significant elongation of the $\mathrm{C} 8-\mathrm{C} 21$ bond $[1.591$ (2) \AA] is observed in this compound which is different from the previous works (Table 2). This may be due to the substituents at the C 8 and C21 atoms. The diagonal contact distances deviate much from those observed in similar works (Table 2). The valence angles at the β-lactam ring deviate from 90° by $2-6^{\circ}$, producing a trapezoid rather than a rectangular shape for the ring.

(I)

The angle between two phenyl rings which are attached to the C 8 atom shows that these two substituents are nearly perpendicular to each other [83.2 (1) ${ }^{\circ}$] and the corresponding torsion angle ($\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 15-\mathrm{C} 16$) is $69.2(2)^{\circ}$. The other two phenyl groups in the phenylstyryl group, which are attached to the β-lactam ring via the C 23 and C 22 atoms to the C 21 atom, are close to being perpendicular [88.8(1) ${ }^{\circ}$].

There are no notable intermolecular interactions.

Experimental

A solution of diphenylacetyl chloride ($0.002 \mathrm{~mol}, 1.92 \mathrm{ml}$) in dry benzene (20 ml) was added dropwise over 1 h at room temperature to a mixture of β-phenylcinnamaldehyde N - p-chlorophenylimine ($0.001 \mathrm{~mol}, 0.242 \mathrm{~g}$) and triethylamine ($0.002 \mathrm{~mol}, 2.78 \mathrm{ml}$) in dry benzene. The mixture was stirred for 2 h at room temperature and the amine salt removed by filtration of the mixture. The filtrate was then washed with $5 \% \mathrm{HCl}$ and water, and dried over sodium sulfate. The title compound was crystallized from ethanol.

Crystal data

$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{ClNO}$
$M_{r}=512.02$
Monoclinic, $P 2_{1} / n$
$a=14.0672$ (13) A
$b=12.6920$ (10) \AA
$c=15.5238$ (17) A
$\beta=92.972$ (9) ${ }^{\circ}$
$V=2767.9(5) \AA^{3}$
$Z=4$
$D_{x}=1.231 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=20.05-27.92^{\circ}$
$\mu=0.166 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, white
$0.85 \times 0.55 \times 0.35 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scans
(North et al., 1968)
$T_{\text {min }}=0.866, T_{\text {max }}=0.944$
8362 measured reflections
8067 independent reflections
4115 reflections with $>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.0305
$$

$\theta_{\text {max }}=30^{\circ}$
$h=0 \rightarrow 19$
$k=0 \rightarrow 17$
$l=-21 \rightarrow 21$
3 standard reflections every 150 reflections intensity decay: 0.56%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.165$
$S=1.031$
8067 reflections
362 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0740 P)^{2}\right. \\
& \quad+0.4079 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 3$	$1.7335(19)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.549(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.205(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.514(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.367(2)$	$\mathrm{C} 8-\mathrm{C} 15$	$1.517(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.411(2)$	$\mathrm{C} 8-\mathrm{C} 21$	$1.591(2)$
$\mathrm{N} 1-\mathrm{C} 21$	$1.482(2)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$132.96(14)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 21$	$131.50(13)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 21$	$95.54(13)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$131.52(16)$

Table 2
Bond lengths (\AA) of the β-lactam ring compared with previous works.

Compd	$\mathrm{O} 1-\mathrm{C} 7$	$\mathrm{~N} 1-\mathrm{C} 7$	$\mathrm{~N} 1-\mathrm{C} 21$	$\mathrm{C} 8-\mathrm{C} 21$
(II) \dagger	$1.213(4)$	$1.357(4)$	$1.482(4)$	$1.536(5)$
(III)	1.188	$1.38(1)$	1.467	$1.55(2)$
(IV)	$1.186(6)$	$1.362(6)$	$1.469(5)$	$1.571(6)$
(V)	$1.193(3)$	$1.370(3)$	$1.474(4)$	$1.568(4)$
(I)	$1.205(2)$	$1.367(2)$	$1.482(2)$	$1.591(2)$
Compd	$\mathrm{C}-\mathrm{C} 8$	$\mathrm{C} 7 \cdots \mathrm{C} 21$	$\mathrm{~N} 1 \cdots \mathrm{C} 8$	
(II)	$1.55(1)$	2.115	2.074	
(III)	$1.56(1)$	2.169	2.057	
IV	$1.56(1)$	2.127	2.068	
(V)	$1.56(1)$	2.121	2.082	
(I)	$1.57(2)$	$2.111(2)$	$2.117(2)$	

\dagger Notes: (II) 3,3-dichloro-4-(p-methoxyphenyl)-1-phenyl-2-azetidinone(Ercan et al., 1996a); (III) 3,3-dichloro-1-(p-chlorophenyl)-4-phenyl-2-azetidinone(Ercan et al., 1996b); (IV) 3,3-dichloro-1,4-diphenyl-2-azetidinone(Kabak et al., 1999a); (V)3,3-dichloro-4-(p-methoxyphenyl)-1-(p-chlorophenyl)-2-azetidinone(Kabak et al., 1999b); (I)3,3-Diphenyl-N-p-chlorophenyl-4-(2-phenylstyryl)azetidin-2-one(this work).

H atoms were placed geometrically on the corresponding C atoms. Because of the large displacement parameters of the C10 and C11
atoms, the C9-C14 benzene ring was restrained during the refinement process.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

VG and YE are grateful for the financial support of the TÜBITAK through project TBAG-1690 and of the Ankara University under project 98-05-05-02.

References

Ercan, F., Ülkü, D. \& Güner, V. (1996a). Acta Cryst. C52, 1779-1780.
Ercan, F., Ülkü, D. \& Güner, V. (1996b). Z. Kristallogr. 211, 735-736.
Kabak, M., Elerman, Y., Güner, V., Yıldırır, S. \& Durlu, T. N. (1999a). Acta Cryst. C55, 1511-1512.
Kabak, M., Elerman, Y., Güner, V., Yıldırır, S. \& Durlu, T. N. (1999b). Acta Cryst. C55, 2115-2117.
Kumar, R., Giri, S. \& Nizamuddin, J. (1993). J. Pesticide Sci. 18, 9-13.
Manhas, M. S., Wagle, D. R., Ciang, J. \& Bose, A. K. (1988). Heterocycles, 27, 1755-1758.
Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Windows. Version 1.03. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sharma, S. D., Kaur, U. \& Saluja, A. (1994). Indian J. Chem. Ser. B, 33, 624628.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

